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Abstract Perturbation of a steadily propagating crack with a straight edge is solved using the method of matched
asymptotic expansions (MAE). This provides a simplified analysis in which the inner and outer solutions are gov-
erned by distinct mechanics. The inner solution contains the explicit perturbation and is governed by a quasi-static
equation. The outer solution determines the radiation of energy away from the tip, and requires solving dynamic
equations in the unperturbed configuration. The outer and inner expansions are matched via the small parameter
ε = L/l defined by the disparate length scales: the crack perturbation length L and the outer length scale l asso-
ciated with the loading. The method is illustrated for a scalar crack model and then applied to the elastodynamic
mode I problem. The crack-front wave-dispersion relation is found by requiring that the energy release rate is
unaltered under perturbation and dispersive properties of the crack-front wave speed are described for the first time.
The example problems considered demonstrate the potential of MAE for moving-boundary-value problems with
multiple scales.

Keywords Crack-front waves · Crack propagation · Dynamic fracture · Matched asymptotic expansions ·
Multiple scales · Wiener–Hopf

1 Introduction

Dynamic perturbation of a steadily travelling crack in a linear elastic medium is of fundamental interest in fracture
mechanics. The possible existence of edge-supported modulations in an otherwise straight edge raises questions
about the stability of a steadily moving crack front. These waves, called crack-front waves, have been the subject
of intense scrutiny since they were first observed by Rice et al. [1] and Perrin and Rice [2] through numerical
simulations of interactions of dynamic crack fronts with inhomogeneities. A theoretical framework for crack-front
waves was provided by Ramanathan and Fisher [3] using dynamic weight functions derived earlier by Willis and
Movchan [4]. Ramanathan and Fisher [3] showed that a mode I (opening) disturbance can propagate along the
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crack front with a speed that is a function of the crack velocity and less than the Rayleigh-wave velocity. Further
numerical work confirmed the earlier findings [5] and showed the explicit form of the (non-dispersive) crack-front
wave speed as a function of the crack speed v [6,7].

The theory of Willis, Movchan and Ramanathan has been extended to other configurations and experimentalists
have sought evidence of crack-front waves. Woolfries and Willis [8] gained insight by examining a scalar crack
model. Woolfries et al. [9] generalised the dynamic weight-function method to cracks in viscoelastic materials
which was used by Willis and Movchan [7] to show that crack-front waves decay in the presence of viscoelasticity.
These theoretical studies considered perturbations of the crack edge in the plane of the moving crack. Obrezanova
et al. [10,11] examined out-of-plane perturbations of a 2-dimensional crack, and Movchan et al. [12] considered
the dynamic stability of a crack in a strip. Predictions of crack-front waves have also been investigated through
experiments. Crack-front waves have been proposed as the cause of crack-surface roughening in brittle materials
[13]. Sharon et al. [14–16] claim to have evidence of crack-front waves in several experiments. Their conclusions
are at odds with those of Bonamy and Ravi-Chandar [17] who used ultrasonic shear waves to distort dynamically
growing cracks. They found that the perturbation of the crack front is a linear function of the wave amplitude, but
the crack perturbation does not persist after the exciting wave has passed. Many questions on crack-front waves
remain to be answered.

The purpose of this paper is to present a new, and, as we will argue, simpler, method for analysing the problem
of a perturbed dynamic crack. The basic idea is that the size of the crack-front disturbance is small compared with
a macroscopic length scale, which we choose here to be defined by the dynamic loading. These yield inner and
outer length scales and a small parameter ε which is the ratio of the length scales. Our approach uses the method
of matched asymptotic expansions (MAE) to split the elastodynamic problem into inner and outer sub-problems
each of which is simpler than the entire problem and contains the physics appropriate to the region. As we will
demonstrate, the inner problem is quasi-static and depends explicitly on the assumed form of the crack perturbation.
The outer problem does not consider the fine scale of the perturbation directly, although it determines the radiation
of energy from the inner region. The inner and outer solutions are related to one another through standard matching
arguments. While the use of asymptotic methods in fracture mechanics is certainly not new, e.g. [18], the method
of MAE has not been used for dealing with complex moving-boundary-value problems of the type considered here.
MAE is both useful and productive for this class of problem as it naturally splits the problem mechanically and
mathematically.

The layout of the paper is as follows. We begin in Sect. 2 with a model problem demonstrating the matched
asymptotic approach to studying the perturbation of a travelling crack edge. The steady solution and the scaling
for the perturbation are introduced in Sect. 2, and the details of the MAE analysis are given in Sect. 3. The same
approach is then applied in Sect. 4 to the physically realistic case of a mode I crack travelling in an elastic material.
The scaling, matching procedure and total solution for the elastodynamic case are developed in a manner analogous
to the scalar problem. The crack-front wave-dispersion relation is obtained and new results are presented for the
dispersive behaviour of the crack-front wave speed, with numerical examples given in Sect. 5.

2 The scalar model problem of a travelling crack

In this section a model elastic problem of a dynamic perturbation to a travelling crack front is solved using MAE.
The application is similar to that for the elastic crack but less complex. We therefore present it in detail in order to
illustrate the general procedure.

2.1 Non-dimensional parameters and scaling

Consider a function φ(x, y, z, t), motivated by the anti-plane displacement field in mode III elasticity [1], and
satisfying a scalar wave equation

∇2φ − c−2φtt = 0, (1)
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where ∇2 is the Laplacian operator, the subscript t denotes partial differentiation in time, and c is the speed of
acoustic waves. A crack occupies the region

x < vt + Lf (z, t), y = 0, −∞ < z < ∞, (2)

that is, it grows at a constant speed, v, except for a perturbation term Lf , where the length L is the magnitude of the
deviation and f is a dimensionless O(1) quantity. For purely out-of-plane motions (displacement in the z-direction)
the crack faces carry zero stress, which we model here (see [1]) as

φy(x, 0, z, t) = 0, x < vt + Lf, (3)

where φy = ∂φ/∂y, etc. The crack therefore opens at a rate that is approximately constant, and it is the deviation
from the steady state that is of interest. The opening is assumed to be caused by a steadily translating symmetric
loading on the crack faces,

φy(x,±0, z, t) = P

l
p

(
x − vt

l

)
. (4)

Note that we have assumed that the non-dimensional forcing function p has argument that scales on a length scale
l, which is taken to be much larger than the perturbation scale L. (For simplicity we interpret this to also imply that
p(x) is zero in the vicinity of the crack tip.) We define the small parameter ε as the ratio of the two length scales:

ε = L/l. (5)

It is convenient to move to a coordinate system fixed in the (constant) moving reference frame, and to non-
dimensionalise the initial-boundary-value problem. Thus, we define dimensionless independent variables as
x − vt

l
→ x,

y

l
→ y,

z

l
→ z,

ct

l
→ t, (6)

together with

v

c
→ v,

φ

P
→ φ, (7)

and the problem reduces to analysing the system

α2φxx + φyy + φzz − φtt + 2vφxt = 0, (8a)

φy(x,±0, z, t) = p(x), x < εf (z, t), (8b)

where

α =
√

1 − v2 . (9)

The loading function p(x) is, by definition, zero close to the crack tip, and we assume that the crack-growth speed is
subsonic so that α remains real. The system (8) still needs to be supplemented by a crack-growth criterion, discussed
below. We emphasise that here and henceforth all parameters and variables are non-dimensional.

2.2 Constant running crack

It will prove useful later to first consider the solution to (8) for zero perturbation in the crack-tip position, f (z, t) = 0.
We start with a constant running point loading applied symmetrically to the crack faces at distance unity (i.e., at
distance l in the original coordinate system) behind the crack tip:

φy(x,±0, z) = δ(x + 1), x < 0. (10)

Here δ(x) is the Dirac delta function. Note that, with a symmetric loading, φ will be zero ahead of the crack tip,
and so this is a standard two-part boundary-value problem which may be solved in a variety of ways; a solution of
(8) and (10) is therefore

φy(x, y, z) = Re

{ −1

π(x + iαy + 1)
√

x + iαy

}
. (11)
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It may be checked, using the identity (x − i0)−1 − (x + i0)−1 = 2π iδ(x), that (11) indeed satisfies (10). Expanding
about the crack tip, and integrating, we find the solution for φ as

φ(x, y, z, t) = Im

{
−1

πα

∞∑
n=0

(−1)n

n + 1
2

(x + iαy)n+ 1
2

}
. (12)

Note that in (11) and (12), Re and Im denote the real and imaginary parts of the expressions to their right, and the
curly brackets are henceforth omitted to maintain clarity. More generally, we consider a symmetric loading along
the crack faces such that

φy(x,±0, z) = p(x), x < 0 (13)

with, again, the assumption that p(x) is zero in a region close to the crack tip. Based on the line load solution, the
near-tip field is

φ(x, y, z, t) = ImP0 (x + iαy)
1
2

[
1 + m

3
(x + iαy) + · · ·

]
, (14)

where

P0 =
√

2

π

K0

α
, K0 =

√
2

π

0∫
−∞

ds
p(s)

(−s)1/2 , m = − 1

K0

√
2

π

0∫
−∞

ds
p(s)

(−s)3/2 . (15)

The amplitude P0 defines the strength of the square-root ‘displacement’ behaviour behind the moving tip and K0

is the analogous scalar ‘stress intensity factor’, such that the stress ahead of the tip is

φy(x, 0, z, t) = K0√
2πx

(1 + mx + · · · ) . (16)

Note that m = −1 for the line load limit (10), and the subscript 0 in P0 and K0 denotes the displacement and stress
coefficients for the unperturbed crack tip at x = 0. Finally, the scalar energy release rate is

G0 = P0K0 (17)

where, in general,

P0 = lim
x↑0

[
(−x)−1/2φ(x, 0, z, t)

]
, K0 = lim

x↓0

[√
x φy(x, 0, z, t)

]
. (18)

3 Asymptotic solution; scalar model

In the previous section the length scale of the forcing was taken to be much longer than that of the disturbance to the
crack tip. This disparity introduces the small parameter ε into the problem (in (8b)) which can be usefully employed
to solve the problem using the method of matched asymptotic expansions [19]. The non-dimensionalisation carried
out previously has cast the initial-boundary-value problem into the ‘outer-field’ form so we shall have to derive an
‘inner’ coordinate system too. In the two coordinate systems, asymptotic expansions will be deduced, containing
sequences of unknown coefficients, and these will be determined by matching together the respective terms.

3.1 The outer expansion

We begin with the following ansatz for the outer expansion

φ(x, y, z, t) = φ(0) + εφ(1) + ε2φ(2) + · · · , (19)

where the superscripts in brackets here and henceforth refer to the expansion function at the order in ε indicated.
Each term in the expansion must satisfy Eq. 8a as well as the crack-face conditions

φ(n)
y (x,±0, z, t) = δn0 p(x), x < 0, n ≥ 0, (20)
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where δn0 = 1 if n = 0 and δn0 = 0 otherwise. The leading-order term is the solution for the unperturbed crack,

φ(0) = Im P0

[
s1/2 + m

3
s3/2 + · · ·

]
, (21)

where the complex variable s is

s = x + iαy. (22)

The complex form of the solution automatically satisfies a homogeneous crack boundary condition close to the
tip. Note that, in terms of the outer coordinates x and y the crack perturbation is very small, hence the reason for
locating the centre of the coordinate system at the origin. We will return to the next term in the outer expansion,
φ(1), once we have considered the leading terms in the inner expansion.

3.2 The inner expansion

We introduce dimensionless inner variables X and Y ,

x = εX, y = εY , (23)

and let �(X, Y, z, t) = φ(x, y, z, t). The wave equation expressed in the inner variables is

α2�XX + �YY + 2εv�Xt + ε2(�zz − �tt ) = 0, (24)

and the edge is now located at X = f (z, t), Y = 0. The inner ansatz is motivated by the scaling and by the form
of the leading order outer solution:

� = ε1/2 �(1/2) + ε3/2 �(3/2) + · · · . (25)

The leading-order term is easily shown to take the form

�(1/2) = Im A(1/2)S1/2, (26)

where the inner complex variable S is

S = X − f + iαY , (27)

is centred on the perturbed crack tip in order to capture the correct singular behaviour at the shifted edge. The
potential �(1/2) satisfies the governing equation (24) with ε set to zero (i.e., a scaled form of Laplace’s equation)
and its derivative is zero on the crack faces as required. The unknown A(1/2) is found by matching the inner and
outer expansions. More specifically, we rewrite the inner expansion in terms of the outer variables. Thus, taking �

up to O(ε1/2), expanding it in terms of the outer variables up to O(ε0), and using S = ε−1s − f , we obtain

�{ 1
2 ,0} = Im A(1/2)s1/2 . (28)

Similarly, the expansion of φ up to O(ε0) when expressed in terms of the inner variables up to O(ε
1
2 ) is

φ{0, 1
2 } = ε1/2 ImP0(X + iαY)1/2 . (29)

Comparing (28) and (29), we see that they are equivalent if A(1/2) = P0. The next term in the inner expansion
satisfies, according to (24) and (25),

α2�
(3/2)
XX + �

(3/2)
YY = −2v�

(1/2)
Xt . (30)

The solution is a sum of the particular integral and a general solution. The former is readily found using �
(1/2)
Xt =

1
4P0ftImS−3/2, combined with the identity (α2∂2

X + ∂2
Y )S̄g(S) = 4α2g′(S), where S̄ is the conjugate of S. Adding

the appropriate general solutions, we determine

�(3/2) = Im P0

[
A(3/2)S3/2 + B(3/2)S1/2 + v

4α2 ft S̄S−1/2
]
, (31)
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where A(3/2), B(3/2) are as yet unknown. The expansion of � up to O(ε3/2) in outer variables up to O(ε0) is
therefore,

�{ 3
2 ,0} = Im P0

[
s1/2 + A(3/2)s3/2

]
. (32)

Similarly, from (19) and (21),

φ{0, 3
2 } = Im P0

[
s1/2 + m

3
s3/2

]
. (33)

Comparison of the latter two expansions, which should be identical by the matching rule, implies A(3/2) = m/3.
To summarise, the inner solution has been determined to O(ε3/2) as follows,

� = ImP0

[
ε1/2S1/2 + ε3/2

(m

3
S3/2 + B(3/2)S1/2 + v

4α2 ft S̄S−1/2
)]

+ O(ε5/2) . (34)

The single real-valued coefficient B(3/2) remains unknown, and will be found in the next section. Finally, we note
for future reference,

�{ 3
2 ,1} = Im P0

[(
s1/2 + m

3
s3/2

)
+ ε

[
− 1

2f s−1/2 +
(
B(3/2) − m

2
f
)

s1/2 + vft

4α2 s̄s−1/2
]]

. (35)

3.3 Wiener–Hopf analysis

In order to proceed to the next order in the outer solution, which is required if we are to match with the inner
expansion from (34) it is necessary to consider the perturbation in the wavenumber frequency domain. The most
general form of f (z, t) can be constructed from the solution

f (z, t) = Im f0 ei(kz−ωt) = Imf0 eiω(κz−t), (36)

where κ = k/ω (assumed to be less than unity) is the edge-wave slowness and f0 is a constant. We seek possible
solutions of the outer system of equations with no forcing but which display the singularity represented by the s−1/2

term in (35). We therefore assume

φ(1)(x, y, z, t) = Im q(x, y)eiω(κz−t) , (37)

where q(x, y) satisfies, according to (8),

α2qxx + qyy + (ω2 − k2)q − 2iωvqx = 0, −∞ < x < ∞, y > 0, (38)

and

qy(x, 0) = 0, x < 0, (39a)

q(x, 0) = 0, x > 0, (39b)

lim
x2+y2→0

(x2 + y2)1/4q(x, y) < ∞. (39c)

One type of general solution is found by a standard analysis involving the Wiener–Hopf method. Thus, let

q(x, y) = 1

2π

∫ ∞

−∞
dξ q̂(ξ)e−iωξx−ωγy , (40)

where γ follows from (38),

γ (ξ) =
(
ξ2 + κ2 − (1 − vξ)2

)1/2
. (41)

The integration contour runs along a strip in the complex ξ plane, D say, which contains the real line except that
it is indented above the point −λ+ and below the point λ−, where these correspond to the branch points of γ . The
Riemann surface of γ is selected so that Re γ ≥ 0. We further define

γ = γ +γ − , (42)

with
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γ ±(ξ) = α (ξ ± λ±)1/2 , λ± ≡ 1

α2

(
1 − κ2α2

)1/2 ± v

α2 . (43)

By definition, the function γ + (γ −) is analytic in the upper (lower) half plane containing the common strip of
regularity D. Generally, the superscript notation ± indicates henceforth functions analytic in these overlapping
half-planes.1 The boundary conditions on x < 0 and x > 0 imply, respectively,

γ q̂(ξ) = T +(ξ), (44a)

q̂(ξ) = W−(ξ). (44b)

Thus γ −W−(ξ) and T +/γ + are equal to one another and hence by analytic continuation and Liouville’s theorem
must be also equal to a constant, say q0. Therefore, q̂(ξ) = q0/γ

−(ξ).
The near tip behaviour of q(x, y) follows from the behaviour of the transform at large ξ , thus, as r → 0,

q(x, y) = q0

2πα

∞∫
−∞

dξ e−ω(iξx+|ξ |αy)

(ξ − i0)1/2

[
1 + λ−

2ξ
− 1

2
αy(λ+ − λ−) sgn ξ + αy(λ+ + λ−)2 sgn ξ

8ξ
+ · · ·

]
. (45)

This can be evaluated using the identities

1

2π

∞∫
−∞

dξ e−ω(iξx+|ξ |αy)

(ξ − i0)1/2 ξn

[
1, sgn ξ

] = −22nn!
(2n)!

eiπ/4

√
π

(−i)n |ωs|n− 1
2
[
sin(n − 1

2 )θ , i cos(n − 1
2 )θ

]
, (46)

for n ≥ 0, where s = x + iαy ≡ |s|eiθ . Hence,

q(x, y) = q0

α

eiπ/4

√
πω

(
|s|−1/2 sin

θ

2
+ iωλ−|s|1/2 sin

θ

2
+

[
i

2
ω(λ+ − λ−)|s|1/2 − ω2

4
(λ+ + λ−)2|s|3/2

]

× sin θ cos
θ

2
+ · · ·

)
. (47)

Thus, from (37), the second order term in the outer expansion is

φ(1) = Im
q0ei π

4

α
√

πω

(
|s|− 1

2 sin
θ

2
+ i

4
ω|s| 1

2

[
(λ+ + 3λ−) sin

θ

2
+ (λ+ − λ−) sin

3θ

2

])
ei(kz−ωt) + O(|s| 3

2 ) . (48)

We are now ready to complete the matching with the inner field �{ 3
2 ,1} of (35). This requires that the coefficients

of |s|−1/2 sin θ
2 , |s|1/2 sin θ

2 and |s|1/2 sin 3θ
2 , are identically equal. The former implies that

q0 = 1
2α

√
πωe−iπ/4P0f0, (49)

while the |s|1/2 sin θ
2 terms match if

B(3/2) = Im

[
m

2
+ i

8
ω(λ+ + 3λ−)

]
f0ei(kz−ωt) .

= Im

[
m

2
+ i

2α2

(
ω2 − k2α2

)1/2
]

f0ei(kz−ωt) + v

4α2 ft , (50)

where (43)2 has been used to express it in a form that will be useful later. Finally, we note that the |s|1/2 sin 3θ
2 terms

automatically match on account of the identity (λ+ − λ−) = 2v/α2. We are now ready to consider the complete
MAE solution.

1 However, the reader is reminded that the subscript on the constants λ± refers only to the choice of sign in (43)!
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3.4 Solution and discussion

The strengths of the perturbed singularities at the perturbed crack edge are defined by

P ≡ ε−1/2 lim
X↑0

|X|−1/2�(X, 0, z, t) = P0 + εP0

(
B(3/2) + v

4α2 ft

)
, (51a)

K ≡ ε−1/2 lim
X↓0

X1/2�Y (X, 0, z, t) = K0 + εK0

(
B(3/2) − 3v

4α2 ft

)
, (51b)

where the values follow from the leading-order terms in the inner solution in (34) using (50). Consider the variations
from the values for the steadily propagating crack: �P = P − P0, �K = K − K0 and �G = G − G0, where
G = PK is the perturbed energy release rate, then the relative changes are

�P

P0
= εg ∗ f + ε

vft

2α2 ,
�K

K0
= εg ∗ f − ε

vft

2α2 ,
�G

G0
= εg ∗ f, (52)

where ∗ denotes convolution, and the transform of g(t) is

ĝ(ω, k) = m + iα−2
(
ω2 − k2α2

)1/2
. (53)

The expressions for �K and �G are identical to analogous ones derived by Woolfries and Willis [8, Eqs. 2.5, 2.7,
2.18]. They also agree with prior work by Rice et al. [1] for the special case of m = 0.

Crack-front waves are possible if the phase speed cp = ω/k and the crack speed v together lie inside the sonic
cone, i.e., they satisfy

c2
t ≡ v2 + c2

p < 1. (54)

In that case the transform ĝ becomes

ĝ(ω, k) = m − |k|
√

1 − c2
t

1 − v2 . (55)

Zeros are possible only if m is positive and satisfies

0 < m < |k|/
√

1 − v2, (56)

in which case ĝ(ω, k) has a unique zero at ω = α
√

k2 − α2m2. This solution has been discussed before, but we note
briefly some properties in the wavenumber domain. The phase speed as a function of k is monotonically increasing
from zero at the cutoff or lowest wavenumber possible, k = m

√
1 − v2, to its asymptote cp = √

1 − v2 as k → ∞.
The crack-edge waves are therefore dispersive, and one can, formally at least, define a group speed (velocity),
cg ≡ dω/dk. This is related to the phase speed by

cpcg = 1 − v2, (57)

and hence, for finite frequency/wavenumber

v2 + c2
g > 1. (58)

This type of dispersion is anomalous in that the group speed is normally associated with the energy-propagation
speed. However, there is no strict connection, and in fact, the notion of energy propagation for edge waves has not
been defined. As a result, we may define and calculate cg although its physical significance is not entirely clear.

It is also of interest to examine the final solution for the near field, as it provides the complete behaviour in the
neighbourhood of the moving crack front. Equation (34) implies that the inner solution can be expressed

� = P0

([
1 + ε

(
1

2
g ∗ f + vft

4α2

)]
ρ1/2 sin

�

2
+

[
m

3
ρ3/2 − ε

vft

4α2 ρ1/2
]

sin
3�

2

)
+ O(ε3/2), (59)

where ρ,� are polar coordinates relative to the perturbed moving tip: x−εf + iαy = ρei�. We note the appearance
of the ρ1/2 sin 3�

2 term, which affects the stress singularity ahead of the crack, but has a different angular dependence
from the standard near tip field ρ1/2 sin �

2 for a steadily moving crack.
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3.5 Properties of the MAE scheme and simplification

Before considering the elastic crack in detail, we note some general features of the matched asymptotic analysis
for the scalar problem. The sequence of terms derived was φ(0) of (19) → �(1/2) of (25) → �(3/2) of (34) → φ(1)

of (48). The latter was derived as an eigensolution using the Wiener–Hopf method, and was necessary in order to
complete the matching of the single remaining coefficient in �(3/2). Note that the particular solution of the inner
term for the forcing in Eq. 30 was not required for matching. In fact, the terms in �P and �K that involve ft cancel
in the final expression for �G, i.e., ĝ of (53). Thus, we calculated the perturbed values of P and K separately,
although the quantity of interest, G, which is their product, turns out to be simpler. This suggests a more direct
procedure, which follows by noting that G has alternative expressions:

G = PK =
√

π

2
(1 − V 2)−1/2 K2 =

√
2

π
(1 − V 2)1/2 P 2, (60)

where V = v + εft is the velocity of the crack edge. The identities (60) are a consequence of the general form of
(15)1 for speed V ,

K =
√

π

2
(1 − V 2)1/2 P. (61)

As a consequence the perturbed energy release rate can be expressed in different ways,

�G

G0
= �P

P0
+ �K

K0
= 2

�K

K0
+ v

α2 ft = 2
�P

P0
− v

α2 ft . (62)

Only one or other of P or K needs to be considered in order to calculate the energy-release rate. In practice, it is
simpler to compute P as it is the field variable calculated in the MAE procedure. Restricting attention to the crack
face X < 0, Y = +0, and using Eqs. 34 and 35, we have

�(−|X|,+0, z, t) = P0

[
ε1/2(1 + εp1)|X|1/2 − ε3/2 m

3
|X|3/2

]
+ O(ε5/2), (63)

and

�{ 3
2 ,1}(−|X|,+0, z, t) = P0

[(
|x|1/2 − m

3
|x|3/2

)
+ ε

[
1
2f |x|−1/2 +

(
p1 − m

2
f
)

|x|1/2
]]

, (64)

where

p1 = B(3/2) + vft

4α2 = ε−1 �P

P0
. (65)

At the same time, the outer expansion evaluated on the crack face is, from (33), (37) and (45),

φ{1, 3
2 } = P0

[
|x|1/2 − m

3
|x|3/2 + ε Imei(kz−ωt) q0

2πα

∫ ∞

−∞
dξ eiωξ |x|

(ξ − i0)1/2

(
1 + λ−

2ξ
+ O(ξ−2)

)]
. (66)

The integral can be evaluated using (46). Matching the O(ε) terms in (64) and (66), the |x|−1/2 singularity gives
the identity (49) for q0, while the next term yields

p1 − m

2
f = Im iω

λ−
2

f0ei(kz−ωt). (67)

The perturbed energy-release rate then follows from Eqs. 62, 65 and 67.
In summary, we have presented two methods to complete the matching—the first and more general applies the

matching to the field φ(x, y, z, t) for all x and y near the origin, and the second only matches the field on the crack
faces, X < 0, Y = 0. The two methods are equivalent because the final stage of the matching requires only a
single real-valued coefficient, and therefore matching of the field along a line amounts to matching over an area
(in x and y). However, B(3/2) is not the most relevant quantity for the purpose of calculating the perturbation in
the energy-release rate, although this coefficient can be found using the second approach, from Eq. 65 once the
coefficient p1 is known. These same general features are repeated in the elastic case. In particular the calculation
of the perturbed energy release rate will be achieved directly once the matching is completed.
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4 The elastic crack

We now turn to the more realistic problem of in-plane perturbations of a steadily propagating mode I crack in an
isotropic elastic solid. It is important to distinguish between two distinct types of ‘crack–edge waves’. The first
is the analogue of the Rayleigh surface wave, that is, an infinitesimal wave of particle displacement confined to
the edge and decaying away from the edge. The second is a wave-like modification of the edge itself. Achenbach
and Gautesen [20] demonstrated the nonexistence of the first type of edge wave on a stationary crack edge. One
can show, using their arguments combined with the analysis in the Appendix, that this result extends to a steady
propagating crack. That is, there there are no localised solutions of this form for any crack velocity that is subsonic
relative to the Rayleigh wave velocity.

4.1 Scaling and asymptotic expansions

The unperturbed crack lies in the plane y = 0, with infinite edge moving steadily at speed v, located at x = 0,
−∞ < z < ∞, in the convected coordinate system. We adopt the same scaled coordinates as in the scalar prob-
lem, with the distinction that the normalisation in time is with respect to the Rayleigh wave speed cR , so that the
non-dimensional variables are(

x − vt

l
,
y

l
,
z

l
,
cR

l
t

)
→ (x, y, z, t),

v

cR

→ v. (68)

The inner and outer expansions for the displacement field u = (ux, uy, uz)
T are

u(x, y, z, t) = u(0) + εu(1) + ε2u(2) + · · · , (69a)

U(X, Y, z, t) = ε1/2U(1/2) + ε3/2U(3/2) + · · · , (69b)

where the inner variables X and Y are as the same as before; see Eq. 23. The expansions in (69) are the analogs
of those in (19) and (25) for the scalar problem. The boundary conditions on the crack faces are that the traction
vector σ = (σxy, σyy, σzy)

T vanishes, except for the loading, defined below.
We introduce the non-dimensional speeds associated with the two bulk wave speeds in an isotropic elastic medium

vI = cI /cR, I = L, T , (70)

where cL = √
(λ + 2µ)/ρ0 and cT = √

µ/ρ0 are the longitudinal and transverse wave speeds, λ and µ are the
Lamé moduli and ρ0 is the mass density. The displacement field is represented by three potentials:

u = ∇φL + ∇ ∧ φT e3 + ∇ ∧ ∇ ∧ φT H e3, (71)

where the L and T are associated with the longitudinal and transverse waves, respectively, and T H is transverse
horizontal. The second transverse potential, φT H , is zero in the absence of the perturbation. The effect of changing
to the moving coordinate x is that each φI satisfies a modified wave equation

α2
I φI,xx + φI,yy + φI,zz − 1

v2
I

φI,tt + 2
v

v2
I

φI,xt = 0, I = L, T , T H (72)

with

αI ≡ αI (v) =
√

1 − v2/v2
I , I = L, T , (73)

and αTH = αT , vTH = vT . The asymptotic analysis will be performed in terms of the potentials, represented as a
3-vector for both the outer and inner regions:

φ ≡
⎛
⎝ φL

φT

φT H

⎞
⎠ , � ≡

⎛
⎝ �L

�T

�T H

⎞
⎠ , (74)

respectively, and which are expanded as

φ(x, y, z, t) = φ(0) + εφ(1) + ε2φ(2) + · · · , (75a)

�(X, Y, z, t) = ε1/2�(1/2) + ε3/2�(3/2) + · · · . (75b)
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4.2 Steadily propagating crack

We first consider solutions for the steadily propagating crack in an isotropic elastic medium. The unperturbed
solution has φT H = 0 and the potentials φL and φT may be represented by analytic functions of two complex
variables

sI = x + iαIy, I = L, T . (76)

We introduce the real valued potentials, ψn, which we express as functions of the complex variables sL, sT ,

ψn(sL, sT ) ≡ 1

µ
√

2πD(n + 3
2 )(n + 1

2 )
Re

⎛
⎜⎜⎜⎜⎜⎜⎝

(1 + α2
T ) s

n+ 3
2

L

i2αL s
n+ 3

2
T

0

⎞
⎟⎟⎟⎟⎟⎟⎠

, (77)

where

D(v) = 4αLαT − (1 + α2
T )2, (78)

and D(1) = 0 based on the normalisation of the wave speeds with respect to the Rayleigh speed. The associated
vectors of displacement and traction are

ϒn = 1
(n+ 1

2 )µ
√

2πD
Re

⎡
⎣(1 + α2

T ) s
n+ 1

2
L

⎛
⎝ 1

iαL

0

⎞
⎠ + i2αL s

n+ 1
2

T

⎛
⎝iαT

−1
0

⎞
⎠
⎤
⎦ , (79a)

�n = −1√
2πD

Re

⎡
⎣(1 + α2

T ) s
n− 1

2
L

⎛
⎝−2iαL

1 + α2
T

0

⎞
⎠ + i2αL s

n− 1
2

T

⎛
⎝1 + α2

T

2iαT

0

⎞
⎠
⎤
⎦ . (79b)

We note, in particular, that the zero-traction conditions on the crack face are satisfied.
These fundamental elements may be used to describe a steadily propagating mode I crack, with zero applied

shear on the crack faces, i.e., σxy(x,±0) = σzy(x,±0) = 0 for x < 0. For instance, the solution for a pair of
travelling-line loads with σyy(x,±0) = −δ(x + 1) is

σyy(x, y) = 1

πD
Re

[
4αLαT

(1 + sT )s
1/2
T

− (1 + α2
T )2

(1 + sL)s
1/2
L

]
. (80)

The near tip fields, in this case, can be expressed terms of the basis functions explicitly as

u =
√

2

π

∞∑
n=0

(−1)nϒn, σ =
√

2

π

∞∑
n=0

(−1)n�n . (81)

More generally, the loading

σyy(x,±0) = −p(x), x < 0, (82)

implies a near tip stress expansion identical to that for the scalar problem (see (16))

φ = K0
(
ψ0 + mψ1 + · · · ) ⇔ σyy(x, 0) = K0H(x)√

2πx
(1 + mx + · · · ). (83)

Here K0 is the stress intensity factor, H is the Heaviside (step) function, and

K0 =
√

2

π

0∫
−∞

ds (−s)−1/2 p(s), m = − 1

K0

√
2

π

0∫
−∞

ds (−s)−3/2 p(s). (84)

This solution serves as the basis for the perturbed crack.
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4.3 Perturbed crack: inner and outer analysis

The leading order term in the outer expansion (75a) is, from (83),

φ(0) = K0

[
ψ0(sL, sT ) + mψ1(sL, sT ) + O(s

3/2
L , s

3/2
T )

]
. (85)

Turning to the inner expansion we note that the potentials satisfy modified wave equations

α2
I �I,XX + �I,YY + ε2

v

v2
I

�I,Xt + ε2

(
�I,zz − 1

v2
I

�I,tt

)
= 0, I = L, T , T H. (86)

The leading term in the inner expansion (75b) follows from (85) as

�(1/2) = K0 ψ0(SL, ST ), (87)

where the inner variables are

SI = X − f + iαIY, I = L, T . (88)

The potentials defined by (87) satisfy the governing equations (86), and the traction conditions on the crack faces.
The potentials in the next term of the inner expansion satisfy the inhomogeneous wave equations

α2
I �

(3/2)
I,XX + �

(3/2)
I,YY = −2

v

v2
I

�
(1/2)
I,Xt , I = L, T , T H. (89)

These may be solved in the same manner as before, as a sum of homogeneous solutions plus the particular solution,

�(3/2) = K0

[
A(3/2)ψ1(SL, ST ) + B(3/2)ψ0(SL, ST ) + vftψ∗(SL, ST )

]
, (90)

where the final term is the particular solution given by

ψ∗(SL, ST ) = 1

µ
√

2πD
Re

⎛
⎜⎜⎜⎜⎜⎝

(1 + α2
T )

α2
Lv2

L

S̄LS
1/2
L

2iαT

α2
T v2

T

S̄T S
1/2
T

0

⎞
⎟⎟⎟⎟⎟⎠

. (91)

Matching the outer term φ{0, 3
2 } with �{ 3

2 ,0} implies that A(3/2) = m.
The complete inner solution is therefore

� = K0

[
ε1/2ψ0(SL, ST ) + ε3/2

(
mψ1(SL, ST ) + B(3/2)ψ0(SL, ST ) + vftψ∗(SL, ST )

)]
+ O(ε5/2), (92)

from which we can express the expansion of the inner in terms of the outer variable as

�{ 3
2 ,1} = K0

(
ψ0(sL, sT ) + mψ1(sL, sT )

+ε

[
1

2
fψ−1(sL, sT ) +

(
B(3/2) − 1

2
mf

)
ψ0(sL, sT ) + vftψ∗(sL, sT )

])
. (93)

These two equations are the equivalents of (34) and (35) for the perturbed scalar crack model. We note that, as in
the scalar problem, the issue is reduced to finding a single real constant, B(3/2).

4.4 Matching and final solution

Based on the experience with the scalar problem, we assume that the O(ε) outer solution is time-harmonic and of
the form

φ(1) = Re eiω(κz−t) ω

2π

∫ ∞

−∞
dξ e−iωξx φ̂

(1)
(ξ, y), (94)

where
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κ = 1/cp (95)

denotes the slowness for an assumed edge disturbance with phase speed cp. The crack-edge perturbation itself is

defined by (36). The transform φ̂
(1)

(ξ, y) is derived in the Appendix, to within a multiplicative factor. The latter is
determined by the near-tip expansion, which is expressed via the large |ξ | behaviour of the transform. Thus, from
the Appendix, we have

φ(1) = Re eiω(κz−t) ω

2π

∫ ∞

−∞
dξ e−iξx b0

ξ3/2

⎛
⎜⎜⎜⎜⎝

−i(1 + α2
T )e−|ξ |αLy(sgn ξ)

(
1 + O(ξ−1)

)

−2αLe−|ξ |αT y
(
1 + O(ξ−1)

)

O(ξ−2)

⎞
⎟⎟⎟⎟⎠

= Re eiω(κz−t) b0
e−iπ/4

√
2

µD
[
ψ−1(sL, sT ) + O(s

3/2
L , s

3/2
T )

]
, (96)

where the identities (46) have been used. The coefficient b0 is found by matching the coefficient of ψ−1 with the
O(ε) term in (93), to give

b0 = e−iπ/4

√
2

K0f0

µD
. (97)

Hence, the near tip expansion is

φ(1) = f

2
K0ψ−1(sL, sT ) + O(|x|3/2, |y|3/2). (98)

The next-order term can be evaluated using the explicit expressions in the Appendix, and in principle the near tip
expansion can be continued. However, the leading-order term suffices for our present needs.

The energy-release rate for the perturbed crack front is

G = PK = FK2 = F−1P 2. (99)

Here, P and K are defined

P ≡ ε−1/2 lim
X↑0

[
|X|−1/2Uy(X, 0, z, t)

]
, K ≡ ε1/2 lim

X↓0

[
|X|1/2�yy(X, 0, z, t)

]
, (100)

where Uy and �yy are the leading-order term in the inner expansion of displacement, (69b), and stress, and [21]

F(V ) = 2αL(V )V 2

v2
T µD(V )

, (101)

with V = v + εft . Based on the lessons learned from the scalar problem, we use the final expression in (99) to find
the perturbed energy-release rate as

�G

G0
= 2

�P

P0
− F ′(v)

F (v)
ft . (102)

Following the procedure for the scalar problem, we can obtain �P by matching the crack-opening displacement.
Thus,

Uy(−|X|,+0, z, t) = P0√
2π

[
ε1/2(1 + εp1)|X|1/2 − ε3/2 m

3
|X|3/2

]
+ O(ε5/2), (103)

and

U
{ 3

2 ,1}
y (−|X|,+0, z, t) = P0√

2π

[(
|x|1/2 − m

3
|x|3/2

)
+ ε

[
1
2f |x|−1/2 +

(
p1 − m

2
f
)

|x|1/2
]]

, (104)

where now

p1 = B(3/2) +
[

3

2αLαT

+ (1 + α2
T )v2

T

4α2
Lv2

L

]
ft

v
= ε−1 �P

P0
. (105)
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The outer expansion for the crack-opening is

u
{1, 3

2 }
y = P0√

2π

⎡
⎣|x|1/2 − m

3
|x|3/2 + ε Re ei(kz−ωt) ωb0

2π

∞∫
−∞

dξ eiωξ |x|

(ξ − i0)1/2

(
1 + a

ξ
+ O(ξ−2)

)⎤
⎦ , (106)

where the complex number a is defined by the expansion of û
(1)
y in (A.16) and (A.17). Matching the |x|−1/2

singularity in the O(ε) terms in (104) and (106) gives the identity (97), while the |x|1/2 coefficient yields

p1 − m

2
f = Im iωaf0ei(kz−ωt). (107)

Hence, the transform for the perturbation in energy-release rate, defined by (52)3, is

ĝ(ω, k) = m + iω2a + iω
F ′(v)

F (v)
. (108)

This is the fundamental dispersion relation, which will be discussed further in the next section. We note that a
similar expression has been obtained by [7, Eq. 4.10], and by [9, Eq. 3.21].2 However, their expressions differ from
(108) in the sign of the second and third terms. This distinction is important for computing the dispersive form of
the crack-front wave (see Sect. (5)), but is immaterial in the non-dispersive limit of m/|k| → 0. Finally, we note
that the real parameter B(3/2) follows from (105) and (107), and the complete inner expansion to O(ε3/2) is then
given by (93).

5 Numerical results and discussion

We discuss solutions to ĝ(ω, k) = 0 for 0 < v < 1, where v is the normalised crack speed relative to the Rayleigh
wave speed. Crack-front waves with phase speed cp = ω/k lie inside the Rayleigh sonic cone if

c2 = c2
p + v2 < 1, (109)

where c is the total speed of the disturbance in the fixed stationary frame. It may be shown [3] that the transform ĝ

of (108) is real-valued for edge-wave speeds inside the sonic cone. Furthermore, using the change of variables of
Ramanathan and Fisher [3], also see [6], we have

|k|−1ĝ(ω, k) = � − 2

√
1 − c2

1 − v2 +
√

1 − c2/v2
L

1 − v2/v2
L

+
v2
L∫

v2
T

dp

π

[2v2p − c2(v2 + p)]β(p)

(p − v2)2
√

p(p − c2)
, (110)

where

β(p) = tan−1

⎛
⎝

√
1 − p/v2

L

√
p/v2

T − 1(
1 − p/(2v2

T )
)2

⎞
⎠ , (111)

and

� = |k|−1m = λm

2π
. (112)

Here λ is the wavelength along the crack, and � is therefore the non-dimensional ratio of the wavelength to the
length scale of the dynamic loading. At a given crack speed, crack-front waves exist for a range of this parameter:
�min < � < �max, where the lower and upper limits correspond to c = 1 and c = v, respectively. Thus,

2 The parameter m used here is the same as that of [9] but twice the value of the quantity m in [7].
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�min(v) = −
√

1 − 1/v2
L

1 − v2/v2
L

−
v2
L∫

v2
T

dp

π

(2v2p − v2 − p)β(p)

(p − v2)2
√

p(p − 1)
, (113a)

�max(v) = 2√
1 − v2

− 1√
1 − v2/v2

L

−
v2
L∫

v2
T

dp

π

v2β(p)

(p − v2)3/2√p
. (113b)

Figure 1 shows �min and �max as a function of the crack speed for the range of elastic materials, characterised
by the Poisson ratio ν = ( 1

2v2
L − v2

T )/(v2
L − v2

T ), which has the permissible range −1 < ν < 0.5. We note that
�min is always negative and decreases monotonically to a finite value as v → 1. Note also that �max increases
monotonically from unity at v = 0 and goes as �max ≈ 2/

√
1 − v2 as v → 1. This behaviour is to be compared

with the scalar problem (see Eq. 55) for which �min = 0 and �max = 1/
√

1 − v2. The dependence upon Poisson’s
ratio is not strong, and therefore for the remainder we consider the single case ν = 1/3.

The phase speed is plotted in Fig. 2 as a function of the crack speed for a range of the non-dimensional wavelength
�. This extends the results of Morrissey and Rice [6] who presented the � = 0 curve for the total speed c, and of
Willis and Movchan [7] who computed the � = 0 curve for the phase speed. Figure 3 shows the total velocity c

as a function of v for the same set of �. The total speed is always close to unity for negative values of �. Thus,
0.995 < c < 1, 0.987 < c < 1 and 0.961 < c < 1 for � = −0.4,−0.2 and 0, respectively. Fig. 4 plots the phase
speed as a function of � for two values of the crack speed. The range of � is consistent with Fig. 1, and note that
the lower and upper limiting values of the phase speed correspond to c = v and c = 1, respectively. By analogy
with the scalar problem, the group speed of the crack-front wave travelling along the edge is defined cg = dω/dk.
It may be shown to be

cg = cp + �

cp

⎛
⎜⎜⎝ 2

(1 − v2)
√

1 − c2
− vL

(v2
L − v2)

√
v2
L − c2

+
v2
L∫

v2
T

dp

π

(c2v2 + c2p − 2p2)β(p)

(p − v2)2(p − c2)3/2√p

⎞
⎟⎟⎠

−1

, (114)

and is plotted in Fig. 5 for a range of values of the wavelength-loading parameter �. Note that values of cg in
excess of unity occur, which is highly anomalous. However, in contrast with the scalar case, the group speed does
not always satisfy the inequality (58), although it holds more often than not.

Fig. 1 The limits of the
parameter � of Eq. 112 as a
function of the crack speed.
The Poisson ratio of the
material ranges from 0.45 to
−0.95 in increments of 0.1
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Λ

Λ
min

Λ
max

ν  = 0.45

ν  = −0.95
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ν  = −0.95
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Fig. 2 The crack-front phase speed cp for ν = 1/3 vs. the
crack-propagation speed for seven values of the non-dimen-
sional wavelength: � = −0.4, −0.2, 0, 0.2, 0.4, 0.6 and 0.8

0 0.2 0.4 0.6 0.8 1
0.5

0.6

0.7

0.8

0.9

1

v

c

Λ = 0.8

 0.6

 0.4

 − 0.2
0

Λ = − 0.4

 0.2

Fig. 3 The total speed of the crack-front wave c =√
v2 + c2

p vs. the crack-propagation speed for seven values

of wavelength: � = −0.4, −0.2, 0, 0.2, 0.4, 0.6 and 0.8
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Fig. 4 The dependence of the crack-front phase speed cp on
the non-dimensional wavelength � at two values of the crack
speed, v = 0.6 and v = 0.8. The upper limits of cp in each
case are
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Fig. 5 The group speed cg of the crack-front wave vs. v for
the same set of values for � as in Fig. 3

6 Conclusions

We have shown how to solve the scalar model of a perturbed travelling crack edge by using the method of matched
asymptotic expansions. The general procedure developed for the model elastic problem was then applied to the
elastodynamic mode I crack. The MAE solution employs outer and inner expansions which are matched via the
small parameter ε = L/l defined by the disparate length scales: the size L of the edge perturbation and the length
scale l associated with the loading. The key to the solution is a homogeneous outer eigensolution which displays
unphysical singularities at the unperturbed crack tip. The reason for this is that the crack is shifted, although the
unphysical eigensolution is not directly applicable at the crack edge. No unphysical singularities are present in
the inner solution, or in the complete matched solution. We have used the MAE scheme to derive the dispersion
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relation for the crack-front wave speed, and have shown its dependence on a range of parameters, including crack
speed, wavelength, and elastic properties. Once the MAE solution is found to second order in both the inner and
outer fields, the dispersion relation is obtained by requiring that the energy release rate, which depends on the inner
solution, is unaltered.

The intent of this paper has been to show by example that MAE provides a natural methodology for solving
problems of this nature. Future work will develop the procedure to situations that are not easily solved by other
means, for instance the perturbation of a dynamic crack front with a cohesive zone at the travelling crack tip. In
this case the size of the cohesive zone defines the inner length scale.

Appendix A: Solution of the O(ε) outer problem

We consider the symmetric boundary-value problem defined by the boundary conditions on y = 0:

σyy = 0, x < 0, (A.1a)

uy = 0, x > 0, (A.1b)

σxy = σzy = 0, −∞ < x < ∞. (A.1c)

This defines a mixed-boundary-value problems on the split regions x < 0 and x > 0. The solution is assumed in the
form (94), and henceforth we will omit the term eiω(κz−t) and concentrate on the transformed quantities û(1)(ξ, y)

and σ̂ (1)
(ξ, y).

The symmetry of the problem implies that we need only consider the half space y ≥ 0. The transform of the
potentials in this half-space may be represented by

φ̂
(1) = (iω)−1

⎛
⎝ Ae−ωγLy

Be−ωγT y

(iω)−1Ce−ωγT y

⎞
⎠ , (A.2)

and hence the displacement is

û(1)(ξ, y) = A(−ξ, iγL, κ)T e−ωγLy +
[
B(iγT , ξ, 0)T + C(−ξκ, iγT κ, γ 2

T − ξ2)T
]

e−ωγT y, (A.3)

where

γL =
(

ξ2 + κ2 − 1

v2
L

(1 − vξ)2

)1/2

, γT =
(

ξ2 + κ2 − 1

v2
T

(1 − vξ)2

)1/2

. (A.4)

The square-root functions are taken so that Re γL ≥ 0, Re γT ≥ 0, thus ensuring decay in the half-space y > 0.
The associated stresses follow from (72) and (A.4). The transformed traction, when evaluated on the plane y = 0,
becomes

(iωµ)−1σ̂
(1)

(ξ, 0) =

⎡
⎢⎢⎢⎢⎣

−2iγLξ −ξ2 − γ 2
T −2iγT ξκ

−(ξ2 + κ2 + γ 2
T ) 2iγT ξ −2γ 2

T κ

2iγLκ ξκ iγT (κ2 + γ 2
T − ξ2)

⎤
⎥⎥⎥⎥⎦

⎛
⎜⎜⎜⎜⎝

A

B

C

⎞
⎟⎟⎟⎟⎠ . (A.5)

It is also useful to list the analogous relation for the on-plane displacement transform, from (A.3) with y = 0,

û(1)(ξ, 0) =

⎡
⎢⎢⎢⎢⎣

−ξ iγT −ξκ

iγL ξ iγT κ

κ 0 γ 2
T − ξ2

⎤
⎥⎥⎥⎥⎦

⎛
⎜⎜⎜⎜⎝

A

B

C

⎞
⎟⎟⎟⎟⎠ . (A.6)
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We are now ready to consider the boundary conditions.
The condition that the stresses σxy and σzy vanish on the plane y = 0 implies that σ̂ (1)

xy (ξ, 0) = 0 and σ̂
(1)
zy (ξ, 0) =

0. The first and third rows of the vector relation (A.5) then allows us to eliminate any two of (A,B,C) in favour of
the remaining quantity. Substituting the result in the equations for σ̂

(1)
yy (ξ, 0) and û

(1)
y (ξ, 0), we deduce that

σ̂ (1)
yy (ξ, 0) = ωµv2

T R

γL(1 − vξ)2 û(1)
y (ξ, 0), (A.7)

where R is the (modified) Rayleigh function

R(ξ) = (ξ2 + κ2 + γ 2
T )2 − 4(ξ2 + κ2)γLγT . (A.8)

The boundary conditions (A.1a) and (A.1b) imply that σ̂
(1)
yy (ξ, 0) is a (+) function, i.e., analytic in the upper half

of the complex ξ -plane, and û
(1)
y (ξ, 0) is a (−) function. Define

Q(ξ) = Q+(ξ)Q−(ξ) ≡ R(ξ)

(η+ + ξ)(η− − ξ)( 1
v

− ξ)2D
, (A.9)

where D is defined in (78) and ξ = −η+ and ξ = η− are the zeros of the modified Rayleigh function R(ξ), i.e.,
the roots of ξ2 + κ2 − (1 − vξ)2 = 0,

η± = 1

1 − v2

(√
1 − κ2(1 − v2) ± v

)
. (A.10)

Thus,

Q(ξ) → 1, |ξ | → ∞, (A.11)

and the functions Q±(ξ) are defined unambiguously by requiring that they both have this property. Using the above
mentioned analytic properties of the transforms we may rewrite (A.7) as

γ +
L (ξ)σ̂

(1)
yy (ξ, 0)

Q+(ξ)(η+ + ξ)
= ωµv2

T D

v2γ −
L (ξ)

Q−(ξ)(η− − ξ)û(1)
y (ξ, 0) ≡ E(ξ), (A.12)

where, by the usual analytic continuation arguments, E is an entire function of the complex variable ξ and

γ ±
L (ξ) = αL (ξ ± λL±)1/2 , λL± = 1

vLα2
L

(
1 − κ2v2

Lα2
L

)1/2 ± v

v2
Lα2

L

. (A.13)

Assume that the stress and displacement behave as

u(1)
y (x, 0) = O((−x)−1/2), σ (1)

yy (x, 0) = O((−x)−3/2), (A.14)

near the edge. This implies that the transforms behave as ξ−1/2 and ξ1/2 as ξ tends to infinity, and therefore the
entire function E is in fact a constant. We assume the constant is non-zero otherwise φ(1) = 0 and the matching
cannot be accomplished.

We note that the only non-trivial solution to (A.7) has an unphysical singularity near the edge of the crack.
This removes the possibility of infinitesimal localised disturbances, analogous to Rayleigh waves on a free surface.
Achenbach and Gautesen [20] considered the possible existence of travelling waves on the edge of a stationary
crack, and showed that neither symmetric nor anti-symmetric solutions can exist. Equation A.7 generalises their
result to steady propagating cracks, and shows the non-existence of symmetric localized modes. A similar analysis
can be done to show that anti-symmetric modes cannot exist on the propagating crack.

In general, the near tip behaviour follows from the expansion of the potentials as |ξ | → ∞. Using

Q−(ξ) = exp

( −1

2π i

∫ ∞

−∞
dζ

log Q(ζ)

ζ − ξ

)
, (A.15)

we have

û(1)
y (ξ, 0) = b0

ξ1/2

[
1 + a

ξ
+ O(ξ−2)

]
, (A.16)
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where, from (A.12) and (A.13),

a = η− − 1

2
λL− − 1

2π i

∫ ∞

−∞
dζ log Q(ζ). (A.17)

This is used in Sect. 4 to obtain the perturbed energy-release rate. The detailed form of the inner expansion and the
near tip field can be obtained by noting that the explicit form of the potentials are⎛
⎜⎜⎜⎜⎝

A

B

C

⎞
⎟⎟⎟⎟⎠ = û

(1)
y (ξ, 0)

i γL(γ 2
T − ξ2)(ξ2 + κ2 − γ 2

T )

⎛
⎜⎜⎜⎜⎝

(ξ2 + γ 2
T )(ξ2 − κ2 − γ 2

T ) + 2ξ2κ2

−2iξγL(ξ2 + κ2 − γ 2
T )

2κγLγT

⎞
⎟⎟⎟⎟⎠ (A.18)

which imply

A = (1 + α2
T )|ξ |−1

(
1 + 1

vξ

[
4

1 + α2
T

− (1 − α2
L)

α2
L

]
+ · · ·

)
û(1)

y (ξ, 0), (A.19a)

B = −2iαLξ−1
(

1 + 2

vξ
+ · · ·

)
û(1)

y (ξ, 0), (A.19b)

C = 2αLαT κ

1 − α2
T

|ξ |−3

(
1 + 1

vξ

[
1

α2
T

+ 3

]
+ · · ·

)
û(1)

y (ξ, 0). (A.19c)

Equations A.16 and A.19 can then be used to derive the near-tip fields.
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